
 91-21951
Automating Hypertext for Decision Support

Michael Bieber

Boston College, Carroll School of Management
Chestnut Hill, MA 02167-3808

(617) 552-3964 Email: bieberm@bcvms.bitnet

Abstract

We are constructing a decision support system (DSS) shell that can support applications in a variety of fields,

e.g., engineering, manufacturing, finance. The shell provides a hypertext-style interface for navigating among
DSS application models, data and reports. To do so we had to enhance the traditional notion of hypertext.

Hypertext normally requires manually, pre-defined links. A DSS shell, however, requires that hypertext
connections be built "on the fly'. In this paper we discuss the role of hypartext in augmenting DSS applications
and the decision-making process, and how we automatically generate hypertext nodes, links and link markers
tailored to an arbitrary DSS application.

One of our main research goals is to make it easier and cheaper to build and use decision support systems (DSS).

We want to enable application builders to construct DSS applications with more functionality than traditional DSSs

have, and to do so more quickly. This goal led to the idea of a DSS shell supporting multiple DSS applications t

(see Figure 1) that produce interactive documents, such as those in Figures 2a and 2b. Interactive documents give

direct access to reports, operations, and other components of DSS applications. The navigation and clarity of

presentation required by interactive documents suggest a hypertext-style interaction, but most current hypertext

systems lack the dynamic and general characteristics inherent in a DSS shell. The heart of this research is our model
of generalized hypertext, which automates and generalizes the standard notion of hypertext for a knowledge-based

DSS shell. Generalized hypertext superimposes a hypertext network on a DSS application, generating all nodes,

links and link markers dynamically from the application's standard, non.hypenext knowledge base. Happily, this

occurs unbeknownst to DSS application builders and users; they can take the hypertext-style interface for granted (see

Figure 3). We have implemented many of these concepts in a prototype system called Max, which is used by the U.

S. Coast Guard [KPBB90].

I I

Interface I I Application Manager

I o,.o,.,II .tlHSubsystem Engine i Model and Data Management
...... Subsystem

Figure 1: DSS Shell and Applications

Financial DSS Application

I Engineering DSS Application

(Manufacturing DSS Application

I Health Carl DSS Application If
I

The purpose of this paper is to discuss generalized hypertext and show how automating hypertext can enhance

decision making with a DSS. We shall introduce generalized hypertext in §3 and show how it overcomes

1 Shells provide standard functionality and a common "look" to a range of applications, with the goal of decreasing the
effort involved in building and using them. For example, spreadsheet packages such as Lotus 1-2-3 can be
considered shells. They provide a standard interface (the tabular worksheat), a set of functions (e.g., statistical,
financial, as well as plain arithmetic) and set of menu commands. The applications are the individual spreadsheets
built by entering formulas and data values in the interface provided. For a further discussion of shells sea [Kim86,

KPBB90].

Figure 2e: A hypothetical interactive document showing the results of executing the "asset" model from a DSS
application. Interactive documents provide the following functionality. All text highlighted in boldface are hypertext
/ink markers indicating the presence of hypertext/inks to documents and other related information. In thisfigure the
user has selected two markers, the "asset" model and the execution result "$316.6m." The system then displays all
appropriate commands and connections to information related to these markers, e.g., descnbe the selected model,
execute the selected model, explain the selected model execution result. Each of these options represents a
hypertext link. The user then may choose one of these links to traverse. In this illustrationthe user chooses an
"explanation* link for the marker "$316.6m', i.e., option (1). We continue this scenario in Figure 2b.

|l-]I execute(asset, hydrofoll(1))

The resultof executing the asset model with

the data scenario hydrofoil(1) is as follows:

fleet cost = $316.6m

lead shfpsailaway cost = $34.5m

Information Available:

(I) describe
(2) execute
(3) show comments

I nformatlon Available:

(I) explanation
(2) re-evaluate

Display] Select
Option

(Cancel]
-->

Display] Select

I Cance I I Optl°n -->_'_

Figure 2t): A hypothetical example of dri/ling down for further detail in a DSS. In Figure 2a the user selected the
link marker "316.6m" and chose to traverse an "explanation" link. The system displayed the resultingexplanation
shown here in the middle interactive document report. Then (s)he selected the link marker "10" in the second to
last line. One of the available options was to show the origin of thisvalue. The user chose this and the system
traversed its corresponding link. This creates the interactivedocument report entitled "origin(10)'.

execute(asset, hydrofoil.__(I)_)

The result of executing the asset model with
the data scenario hydrofoil(!) ls as follows: II

I I

fleet cost : $316.6m I !
explonatlon($31 6.6m)

3.16S?Ole8 Is the result of evaluating f_c under scenario hydrofoil(I).
The variable f_c is: Total Meet cost

It is computed using the model (]sees as follows:
f_c :: c_l_= + n_f * c_f_s

Here is the data used:

c_l_= = 3.'11C]_ orl_in(lO)

n_f = I0 I0 is the number of follow ships (n_f) in data scenario -

c_f_s=2.O hydrofoil(I). It was entered by John Doe on 10/1/90 at
5:05pm and was last modified on 10/5/90 at 2:32pm by

James Bob. Its certainty factor is ±20_I.
0 I¢ 1

Generalized

Hyperlext

Figure 3

DSS Application User

uses hypertext-style navigation within DSS applications

DSS Application Builder

the application-specific knowledge base (s)he develops is

mapped to a hypertext "network" by theapplication manager

Application Manager Builder

specifies a set of general bridge laws that maps the knowledge bases of
individual applications to hypenext elements (nodes, links and link markers)

limitations inherent in what we call standard hypertext, the way hypertext traditionally has been implemented. First,

in §2 we set the stage by explaining how a hypertext-oriented DSS can support decision makers.

§2 Hvoertext and Decision Sunoort Systems: Suooortine the Four Staees of Decision Makine
In this section we describe how DSS applications can assist decision makers and how hypertext can augment

DSS functionality. To do so we shall use a framework comprising Herb Simon's intelligence-design-choice model

of decision making [Sim772] and Henry Mintzberg et al.'s additional step, authorization [MRT76 p257].

Intelligence is the act of gathering information. Design involves developing alternative scenarios or problem
solutions. Choice is selecting the "best" option. Authorization is the process of justifying the recommendation or

decision made to those affected by it.3 In the paragraphs that follow we discuss the role for DSS and hypertext in

each stage of decision making and justification.

Intelligence

Intelligence is the act of exploring a decision domain, either looking for or responding to a problem or

opportunity. A DSS can help by maintaining information--the models 4, data and reports pertinent to

understanding the general decision domain and, in particular, the issue-at-hand. For example, for a mortgage
domain the DSS would contain information about the economy, interest rates and the housing market. Its

models would help a loan officer evaluate a client's risk factor and determine what rate to charge. In an

acquisition domain the DSS would contain life cycle cost models (e.g., construction, operation and maintenance

equations) as well as exact or statistical data on the items being purchased or constructed. Similarly, scientific

and engineering domains would have their own sets of models, data and standard reports.

Not only should the DSS maintain these models and data, but it should help the decision maker (or the
analyst working for him) access and understand these. Now consider hypertext, which many believe reduces the

2 For an interesting analysis see [Sil86 p24].

3 Of course, instead of being performed sequentially, these stages typically are intertwined during a decision

analysis.

(There are many types of decision models: algebraic (e.g., sets of formulas found on a spreadsheet), optimization

(e.g., sets of equations used in linear and integer programming), simulation, etc. Models are executedby applying a
data scenario--a set of data values--to the model's variables.

cognitive overhead in viewing a complex domain [Con87 P4015. We can think of hypertext as a method for
presenting short information displays embedded with links to further details or other related information.

Hypertext-style navigation or browsing allows the user to explore this "network" selectively, choosing to see
what he wants to and by-pass what he already understands or feels is less important at the moment. What would
we want to link in a DSS? Related models, data and reports should be connected. Models should be linked to

their submodels and variables. These variables should be linked to all possible data values registered in an

application data base. All of the above should be linked to any execution results derived from them, especially

when these results appear in reports. The user should be able to retrieve definitions, explanations and any
background information (including any comments or annotations) inferable about items of interest. We illustrate

access to such information in Figures 2a and 2b. The DSS interface can use hypenext concepts when structuring
and presenting information, so that relevant data (e.g., based on these types of links) is readily accessible to the

analyst or decision maker in a comprehensible and useful format [HM89 I>47]. We have dubbed this hypenext-
style accessibility the WYWWYWI ("what you want, when you want it") principle [BBK88].

l_xaga

The analyst will design potential scenarios to address the issue-at-hand. This may involve creating additional

models or developing alternate data scenarios (sets of data values for the model equation variables), perhaps

through sp_heet-style "what-if" analysis. For example, an analyst in the acquisition domain may explore the
effects of possible changes in petroleum prices or the inflation rate on operation and maintenance costs over a
thirty-year period.

To support the hypertext-style navigation described earlier, the DSS must both register the new models and

data scenarios, and create the hypertext network--the nodes, links and link markers accessed during exploration
and execution.

According to the principle o/decision support [Kim88], the analyst will use the DSS to investigate different

alternatives until he comes up with an optimum choice or quits (e.g., for timing reasons or perhaps because there

is no optimum), in which case he will choose the best alternative he has found (assuming it is "satisfactory").

Normally the DSS's operations include executing models and performing what i/analysis.

How does hypenext help? Again, hypertext provides easy access to explanations and other information.

Furthermore, hypertext-style markers can act as embedded menus [KS86], giving the analyst "context-sensitive"

access to normal DSS operations, such as model execution. We see this in Figure 2a.

Analysts often use a DSS to develop a recommendation. The tangible result of a completed DSS analysis is a

report documenting it. Decision makers can use this report to reach a f'mal decision and then convince others of
its logic.

For example, Figure 4 shows the final repon of a procurement committee. Hypertext's role would be to

facilitate the connection between this report and all supporting information linked to the highlighted markers.

This should help the decision maker in several ways. The DSS (ideally) would contain the answer to any

questions he would have, especially if the analyst has added comments. The decision maker can investigate any

piece of information, exploring all the way "down" to its origin (recall Figure 2b), thereby increasing his overall

understanding of, and confidence in, his decision. The most important point is that the decision maker is now

serf-sufficient. He can do all this by browsing on the computer without active assistance from the report's
author.

s At its most basic level, hypertext is simply the concept of linking any two pieclis of information, for example, a
number with an explanation of how it was generated. For surveys of hypertext history and systems see [Con87,

SK89 and Nie90]. [IRIS89 and Nie89] provide further bibliographic references. See [Min89] for a general discussion
of hypertext and decision support systems.

• o °.°°°.°.o,oo ,°,o.o °o...oo...--.°.. ° .. ° °°, °oo,.:

Final Committee Report

To •
From :

Subject :
Date :

,John Doe, Vice President of Finance
Procurement Committee

Fi_l Report ReaerdiJs4| Irev Fleet CozL(12arstion

HaW 2, 1990

This committee _,as to evaluate three alternative fleet configurations in response to

anticipated gro_vth in our customer base. Each alternative considers purchasing ne_v
vehicles and rearranging their home]bases in the _jremter re_,ion. In summary, the

three options vere as follo_'s.

(1) 10 ne_" vehicles and no change in base]ocations" $13.287.432

(2) 6newveh ;'1at ""'_ 9 _AA_+;,,,,_lk_¢_. tl_ qa_ Ann

($) 8 ne_" vehi-[_] $13,287,432 '.'_

This is the tots] 1 O-wear cost of option (l) _vhere 0 additions]

We recommend & sites are obtained, 0 current sites are decommissioned, and 10 --1

vehicles are added to the fleet. /
Of]

Iiew Site &oq=isition Cost $0 /

New Site llointe_ace Cost $0 |
Carrent Site Decommission Cost $0

Carrent Site SeTi_ $0
Ve_cte F_rchase Cost $410._27

Vehicle Ol)erotion Cost $6.000.000
Vehicle Msinteaa2ce Cost $82.10_

&dditional Employee Cost ._.$.8_0.000

Totol $13,287.432

=i..,. 4 OI
• ... °** .. ° ° ...

In summary, these stages implement the argumentation theory of DSS, according to which "the main purpose of

a DSS is to support the construction, evaluation and comparison of arguments for courses of action" [Kim88,

KPBB90]. These "arguments" then are used to justify the course of action taken. The hypertext concepts employed

by the interface facilitate such support, giving the user easy access to information and operations within the DSS

application without overwhelming him with details.

Can this process be made more efficient? Consider the second interactive document in Figure 4, which

presumably had to be constructed manually. Suppose the system could generate this report, along with all other

lower-level definitions and explanations. This would expedite the analyst's task dramatically! It is this DSS

functionality that we shall describe in the next section.

63 Generalized Hvoertext: Overcomine the Limitations of Standard Hvnertext

The DSS environment described in §2 could be supported by most hypertext systems today, but with a great

restriction in functionality. To illustrate this, in Technical Appendix 1 we give the internal code for part of the

knowledge base defining the interactive documents shown in Figure 2b. (A systems programmer would arrange such
code based on the nodes, links and link markers created by the application builder, the application builder and user

never see this view of hypenext6.) What is wrong with this internal representation? The problem is that the

knowledge base consists of static, explicit, pre-defined entries. The builder must anticipate the us_ and provide all
the nodes, links and markers he believes the user will want to access in the future. He therefore must do all DSS

analysOs and prepare their explanations in advance so he can specify the hyperlext link markers embedded in the

appropriate reports. Each application builder must establish the hypenext nodes, links and markers related to his
application.

Considering all the possible executions, execution results and explanations hinted at in Figures 2 and 4, we see
that in a typical application, an immense amount of analysis is possible, too much to do in advance. Furthermore,

it would be unreasonable to ask the application builder to declare all the hypertext elements in his application. The

effort in doing a thorough job would frighten away the most willing application builder. Besides, a DSS generally
is a dynamic beast. Its knowledge base contains definitions, models, data and documents, but not execution results

or their explanations. The latter are produced dynamically upon user request, and so must any hypertext links
mapped to them. Our only feasible option is to automate the generation of the hypertext network.

How do we automate hypertext in a knowledge-based DSS? First, it is important to note that hypertext
functionality (e.g., creating, exploiting and managing links and linked information items) must be implemented in a

way that is accessible to all current and future shell applications. Therefore we treat hypertext functionality as

system-level (as opposed to application-level) support. Recall Figure 1, where the hypertext engine was embedded in

the shell's interface component. Like database systems and user interface management systems, the hypertext engine
is an application-independent, system-level tool for providing hypertext functionality for specific applications.

When automating hypenext, the hypertext engine cannot take an arbitrary application's knowledge base and

magically infer what elements correspond to hypcrtext nodes and links. Instead, the shell's application manager
subsystem must provide some translation routines that the engine can use to make its inferences 7. We call these

translation routines bridge laws [Nag61, Hau78, Kim791 because they serve as a "bridge" or connection between

elements defined in the language of the application's knowledge base and those in the shell's hypertext engine. As
we shall see, bridge laws exploit logical quantification, enabling individual laws to map entire classes of application

objects (e.g., models or variables) to hypertext entities; the same bridge law will map any number of instances in the

application knowledge base. For example, recall the three possible links emanating from the "asset" model in

Figure 2au"describe", "execute" and "show comments." How could this set be generated in a general manner'?

Given any link marker that represents the name of a model, in Technical Appendix 2 we describe a set of eight

predicates that generates this trio of links. These predicates will work for every model ever to be declared by an

application builder, now and in the future. In [Bic90] we describe similarly compact sets of bridge laws for

variables, data scenarios, etc. Additional bridge laws may be developed by the systems programmer responsible for

the shell's application manager subsystem. Application builders and users need have no knowledge of bridge laws.
To them, hypenext functionality occurs automatically!

In developing generalized hYl_rtext we had to solve three of the outstanding problems in hypertext research as

identified by Halasz in [Hal88]. These ate the creation and manipulation of virtual hypertext entities, computation

over the knowledge base during link Iraversal, and the tailorability of the hypertext network. We describe these in

sThe shell'sinterfaceismuch _friondliet"thanthiscode. Forexample, ina typicalhypertextsystem,an application

builderwould constructa linkby selectinga portionoftextwithhismouse, choosingthe "createlink"menu, and

selectinga second portionoftextina differentwindow. The system would thengeneratetheinternalcoda forthe

link,similartothatshown inTechnicalAppendix I.

7 Analogous to a spreadsheet package that provides all necessary functions and menu commands to an individual
spreadsheet, a DSS shell application manager subsystem would provide both the standard report templates and the
tools for manipulating models and data (e.g., execution and explanation), as long as application builders daclare their
models and data in a standard format, much as one is forced to in a spreadsheet. Based on this standard format, the
applica/ion manager in a hypertext-oriented DSS shell provides general bridge laws for mapping application models,
data, template reports, functions and commands to hypertext nodes, links and link markers.

following paragraphs. 8

Bridge laws arc examples of virtual entities 9. By virtual, we mean not fully identified or resolved. The

parameters of a virtual entity are not known or instantiated in their entirety and therefore can assume any compatible
value. For example, the "316.6m" link marker in Figure 2a is virtual when the user selects it because two possible
links can be associated with it, i.e., its "link" parameter can be filled by one of the two compatible links. One can

think of virtual entities being represented by templates prescribing both the entity's internal format and how the

hypertext engine should infer compatible values to fill its parameter slots during link traversal. (We describe the

actual technique used in Technical Appendix 2.) When the hypertext engine has filled all the slots then we say that

the virtual entity is resolved and that we have either found or created (generated) a specific instance of that entity.
When the user selects the "316.6m" link marker, the hypertext engine uses the bridge laws for link markers and links

to infer which links could exist for the markers selected and tentatively fills in the templates with values drawn from

models and data in the application knowledge base. The user then chooses one of these tentative links to traverse, as

shown in Figure 2a. As Appendix 2 indicates, several pieces of information now must be inferred to resolve the link

chosen. One is the type of link (e.g., "explanation" or "re-evaluation"). Another is the link's destination. The

hypertext engine uses additional bridge laws to infer these from the contents of the application knowledge base.
Once these are known, we consider the link fully resolved because the template is complete.

The next step is computation, i.e., actually generating the contents of the destination node specified by the link.

A DSS operation (e.g., a model execution) normally must be performed to create the destination node (e.g., a
decision report describing the results of the operation). Once this is done, the shell prepares the outcome for display

in an interactive document. Part of this process involves the hypertext engine, which uses bridge laws to determine

which portions of the interactive document should be highlighted as link markers. These markers will be virtual, for

as we saw, they will not be associated yet with actual links. When the user selects one of these markers, the

resolution cycle repeats. In summary, we say that link traversal in generalized hypertext follows the select-infer-

traverse-infer paP.ea'ndescribed here.

We want an application to be able to tailor its processing and resultant reports to a given user's skill level and the

specific task he is using the DSS application to accomplish. The shell can do this by maintaining multiple contexts
or modes, each associated with a different view of application knowledge base components and with a different set of

report formats. The hypertext engine checks contexts as pan of every operation it performs. For specific details we
refer the reader to [Bie90]. Contexts are also instrumental in providing the task environments discussed in the next

section.

_4 Discussion and Future Develonments

Generalized hypertext is a logic-based technique for automating hypertext within a knowledge-based decision

support environment. Generalized hypertext adds value by providing a hypertext-style interface to a decision support

system (DSS) application without an author having to create any nodes o¢ links. (Of course, users can add their own
comments and other annotations, just as in regular hypertext systems.) Generalized hypertcxt can be applied to any

domain that is well enough understood and expressible for the systems programmer building an application manager

subsystem to map the components of the application knowledge base to generalized hypertext entities and
attributes, to

The direct access to information provided by a generalized hypertext DSS makes its use easy for someone who is

new to a decision domain. He can explore the domain at his own pace, read the comments and definitions, and

S We discuss this entire process more fully in [BK90] and [BiegO].

g By hypertext entities we mean hypertext nodes, links and link markers. Furlher hypertext entities are presented in

[Bie90].

lo For an interesting discussion of domains where this is not possible see [RT88].

experiment with applicationmodels and data. Another benefitof hypertextisthedegree of usercontrol.More

advanced userscan by-passinformationeasilywithwhich theyare familiar.To assisttheuserfurther,one direction

we shallexploreinour researchistaskenvironments,localenvironmentsorganizedaround the_m'¢ theanalyst

should followwhen he isperforming an individualtask[Bie90]. They are tailoredspecificallytothe task(and

perhaps to the user'sskillsor preferences).Only relevantinformation(data,documents, reports,models) and

commands willbe available.Also,taskenvironmentscan serveasan enhanced form of documentation,building

upon thenotionof,e.g.,guided toursinNoteCards [M189] orZellweger'sscripteddocuments [Z,e189].An advanced

implementation of taskenvironments could incorporate"active"agentsthatguide the userthrough the process,

reminding him ofstepsleftout and making suggestions.

Generalizedhypertextenhancesthe functionalityand easeofuse ofDSS applicationswithina DSS shell.Thisis

evidentfrom our prototypesystem,Max, describedin[KPBBg0]. Itisour beliefthatgeneralizedhypertextwill

advanceboth thestateofhypenext researchinknowledge.basedenvironmentsand theartofinformationpresentation

indecisionsupportsystems.

Acknowledgement

I want to thankStevenO. Kimbrough of the Wharton School,Universityof Pennsylvaniaforhishelp indeveloping
generalizedhypertext,which was invaluable.

l'hi=work was motivatedby and fundedinpartunderconu'actDTCG39-86-C-80348,betweenthe U. S.CoastGuard and

the Universityof Pennsylvania,with StevenO. Kimbrough asprincipalinvestigator.

Technical Annendix 1: Inside a Standard Hvoertext Knowledfe Base

This appendix presents a systems programmer's view of the nodes, link markers and links in the hypertext
knowledge baserepresentingFigure2b'sreports.Each report,linkmarker and connectionisrepresentedby a "node",

"madw,r"or"link"predicate.We precedeeach setofpredicatesby a legendexplainingitsthreearguments.

Legend: node(unique rmoon id. tenon title, list of the text and link markers comvrising its contents_
node(l, title('execute(asset, hydrofoil(I))'),

content(['The result of executing the', marker(I), "model with the data scenario', marker(2), "is as
follows:<cr>', marker(3), ".', marker(4), "<cr>', marker(5), "-', marker(6)]))

node(2, title('explanation($316.6m)'),
content([marker(17), "is the result of evaluating".]))

node(3, title('odgin(10)'), content(['This value for the number of helicopters...'J_ ... etc.

Legend: markerfuniaue marker id. the link associated with the marker, the text reot'L=_xtdn=the marker_

marker(l, link(l), ¢ontant('asset'))
marker(2, link(2), ¢ontent('hydrofoil(1)'))
marker(3, link(3), ¢ontent('fleat cost'))

marker(4, link(4), ¢ontant('$316.6m')) ... etC.

Le=end: link(uniaue link id. the reoort where the link originates, the link's destination reoorO
link(l, node(l), node(4))
link(2, node(1), node(5))
link(3, node(1), node(2))

link(4, node(l), node(3)) ...etc.

Technical Annendix 2: Generalized Hvoertext

This appendix presents simplified examples of bridge laws, which are specified using quantified predicates in first

ordex logic. The set of predicates here, which includes both bridge laws and some of the application knowledge base

declarations they find, generates the hypertext links emanating from all keywords in interactive documents that are

names of applicationmodels. For clarity,we precede bridgelaw names with the code "ght"and application

knowledge base decimations with "appl".

Legend: The format of the _eneralized hvoertext link predicate,

We declare generalized hypertext links with the following predicate.
this same formal

As we shall see neXL bridge laws for links have

ght_link(id, originating node, originating marker, destination node, link operation type)

Bdd_ Law Declarin_ Links from Kevword Markers to Destination Noda¢

This bridge law establishes links to all keywords i that are names of elements in the DSS application. It calls the

application predicate appl_type/2 to identify the elements, bridge law ght_operation/2 to determine the link operation

type o, and bridge law ght_identifier/3 to generate the name of the destination node x given the link operation
identified. (Arguments with underscores accept any values passed.)

(Vi, o, t, x) (ght_link(i, ..., keyword(i), x, o) <--

(appl_type(i, type(t)) &
ght_operation(type(t), i, o) &
ght_identifier(i, o, x)))

Identifying the T vDe of A0plication Element Selected

It is reasonable to assume that applications can identify each of their elements. This predicate determines that i is an
application model if the application has an appl_model/3 predicate declared for it.

(Vi) (appl_type(i, type(model)) <--

(appl._model(i, ._, ._)))

Brid=e Laws Inferrimz Link Ooeration Tyres for Models and Elements with Comments

The first two bridge laws find "describe" and "execute" links for application models.

ght_operation(type(model), _, operation_type(describe))

ght_operation(type(model), _, operation_type(execute))

The next determines whether any comments are registered for the element passed.

(Vi) (ght_operation(_., i, operation_type('show comment")) <--

(comment(i,_)))

Brid_,e Laws Inferrin2 Destination Node Identifiers

Given the link operation type, these laws infer the identifier of the destination node that the link operation will
generate. Tim destination identifier is passed in the third ;u'gument.

(Vi) (ght_identifier(i, operation_type(describe), describe(i)) <--
(appl_type(i, type(model))))

(Vi, d) (ght_identifier(i, operation_type(execute), execute(i, d)) <--
(appLtype(i, type(model)) &

appl._data_scenario(i, d)))

(Vi) (ght_identifiar(i, operation_type('show comment"), comment(i)))

[BBK88] Bh_'gava, Hemant K., Michael P. Bieber and Steven O. Kimbrough, "Done, Max, and the WYWWYWI

Principle: Generalized Hypertext and Model Management in a Symbolic Programming Environment,* in Proceedings
of the Ninth International Conference on Information Systems, Minneapolis, 1988, pages 179-192.

[Bie90] Bieber, Michael, Generalized Hvoertext in a Knowledge-based DSS Shell Environment Ph.D. Dissertation,
Decision Sciences Department, University of Pennsylvania, 1990.

[BK90] Bieber, Michael and Steven O. Kimbrough, "Towards a Logic Model for Generalized Hypertext," Proceedings
of the 23nd Hawaii/nternationa/Conference on System Sciences, Hawaii, 1990.

[Con87] Conklin, Jeff, "Hypertext: a Survey and Introduction," /EEE Computer, volume 20 number 9, 1987, pages 17-
41.

[Hal88] Halasz, Frank G., "Reflections on Notecards: Seven Issues for the Next Generation of Hypermedia
Systems', Communications of the ACM, volume 31 number 7, July 1988, pages 836-855.

[HM89] Herrstrom, David S. and David G. Massey, "Hypertext in Context," in The Society of Text: Hvoertext.

Hvoermedia and the Social Construction of Information, Edward Barrett (ed), MIT Press, Cambridge, MA, 1989,
pages 45-58.

[IRIS89] "Hypermedia Bibliography," Institute for Research in Information and Scholarship (IRIS), Box 1946, Brown
University, Providence, RI 1989.

[Kim79] Kimbrough, Steven O., "On the Reduction of Genetics to Molecular Biology," Philosophy of Science, volume
46 number 3, September 1979, pages 389-406

[Kim86] Kimbrough, Steven O., "On Shells for Decision Support Systems," Wharton School, Department of Decision
Sciences, working paper #86-07-04, July 1986.

[Kim88] Kimbrough, Steven O., "The Argumentation Theory for Decision Support Systems," draft of Chapter 2 of
Decision Suooort Systems: Technolooies for Reasonina and Aroumentation. Wharton School, Department of
Decision Sciences, 1988.

[KPBB90] Kimbrough, Steven O., Clark W. Pritchett, Michael P. Bieber and Hemant K. Bhargava, "An Overview of the
Coast Guard's KSS Project: DSS Concepts and Technology," Transactions of DSS-90, TIMS, Boston, MA, May 21-
23, 1990, pages 63-77; accepted for publication in Interfaces.

[MI89] Marshall, Catherine C. and Peggy M. Irish, "Guided Tours and On-Line Presentations: How Authors Make

Existing Hypertext Intelligible for Readers," in Proceedings of the 1989 Hypertext Conference, Pittsburgh, PA,
November 1989, pages 15-42.

[Min89] Mine:h, Robert, "Application and Research Areas for Hypertext in Decision Support Systems," Journal of
Management Information Systems, volume 6 number 3, Winter 1989-90, pages 119-138.

[MRT76] Mintzberg, Henry, Duru Raisinghani and Andre Theoret, "The Structure of Unstructured Decision
Processes," Administrative Science Quarterly, volume 21, June 1976, pages 246-275.

[Nag61] Negel, Ernest, The Structure of Science: Problems in the Looic of Scientific I_xolanation, Harcourt, Brace
&Wodd, Inc., New York, NY, 1961

[Nie89] Nielsen, Jakob, "Hypertext Bibliography,"/-lypermedia, volume 1 number 1, Spring 198g, pages 74-91.

[Niego] Nielsen, Jakob, Hvoertext and Hyoermedia, Academic Press, 1990.

[RT88] Raymond, Darrell R. and Frank W. Tempe, "Hypertext and the Oxford English Dictionary', Communications of

thaACM, volume 31 number 7, July 1988, pages 871-879

[Sim77] Simon, Herbert, The New Science of Manaaement Decision, Harper and Row, NY, NY, 1960, 1977 (revised

edition).

[Sil86] Silver, Mark S., Differential Analysis for Comouter-Based Decision Suooort. Ph. D. Thesis, Wharton School,
1986.

[SK89] Shneiderman, Ben, and Greg Kearsley, Hvoertext Hands-On! An Introduction to a New Way of Oraanizina
and Accessina Information, Addison-Wesley, Reading, MA, 1989.

[Ze189] Zellweger, Polle, "Scripted Documents: A Hypermedia Path Mechanism," in Proceedings of the 1989

Hypertext Conference, Pittsburgh, PA, November 1989, pages 1-14.

Session 7

Future of Hypermedia
Chair: David Palumbo

Hypermedia as Medium
Chris Dede

Hypermedia = Hypercommunication
Mark R. Laff

Moving from Knowledge Presentation to
Knowledge Representation

David Palumbo

